Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38579717

RESUMEN

Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.

2.
Cell Rep ; 42(7): 112689, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37352099

RESUMEN

Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis translates into organ shape. We address this question using the Arabidopsis sepal as a model organ. In plants, cell growth is restrained by the cell wall (extracellular matrix). Cellulose microfibrils are the main load-bearing wall component, thought to channel growth perpendicularly to their main orientation. Given the key function of CELLULOSE SYNTHASE INTERACTIVE1 (CSI1) in guidance of cellulose synthesis, we investigate the role of CSI1 in sepal morphogenesis. We observe that sepals from csi1 mutants are shorter, although their newest cellulose microfibrils are more aligned compared to wild-type. Surprisingly, cell growth anisotropy is similar in csi1 and wild-type plants. We resolve this apparent paradox by showing that CSI1 is required for spatial consistency of growth direction across the sepal.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras , Microtúbulos/metabolismo , Celulosa/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Morfogénesis
3.
Genome Biol Evol ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37170911

RESUMEN

The hypervariable major histocompatibility complex (MHC) is a crucial component of vertebrate adaptive immunity, but large-scale studies on MHC macroevolution in non-model vertebrates have long been constrained by methodological limitations. Here, we used rapidly accumulating genomic data to reconstruct macroevolution of the MHC region in amphibians. We retrieved contigs containing the MHC region from genome assemblies of 32 amphibian species and examined major structural rearrangements, duplication patterns and gene structure across the amphibian phylogeny. Based on the few available caecilian and urodele genomes we showed that the structure of ancestral MHC region in amphibians was probably relatively simple and compact, with a close physical linkage between MHC-I and MHC-II regions. This ancestral MHC architecture was generally conserved in anurans, although the evolution of class I subregion proceeded towards more extensive duplication and rapid expansion of gene copy number, providing evidence for dynamic evolutionary trajectories. Although in anurans we recorded tandems of duplicated MHC-I genes outside the core subregion, our phylogenetic analyses of MHC-I sequences provided little support for an expansion of nonclassical MHC-Ib genes across amphibian families. Finally, we found that intronic regions of amphibian classical MHC genes were much longer when compared to other tetrapod lineages (birds and mammals), which could partly be driven by the expansion of genome size. Our study reveals novel evolutionary patterns of the MHC region in amphibians and provides a comprehensive framework for further studies on the MHC macroevolution across vertebrates.

5.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628463

RESUMEN

Cell growth in plants occurs due to relaxation of the cell wall in response to mechanical forces generated by turgor pressure. Growth can be anisotropic, with the principal direction of growth often correlating with the direction of lower stiffness of the cell wall. However, extensometer experiments on onion epidermal peels have shown that the tissue is stiffer in the principal direction of growth. Here, we used a combination of microextensometer experiments on epidermal onion peels and finite element method (FEM) modeling to investigate how cell geometry and cellular patterning affects mechanical measurements made at the tissue level. Simulations with isotropic cell-wall material parameters showed that the orientation of elongated cells influences tissue apparent stiffness, with the tissue appearing much softer in the transverse versus the longitudinal directions. Our simulations suggest that although extensometer experiments show that the onion tissue is stiffer when stretched in the longitudinal direction, the effect of cellular geometry means that the wall is in fact softer in this direction, matching the primary growth direction of the cells.


Asunto(s)
Pared Celular , Fenómenos Mecánicos , Anisotropía , Pared Celular/fisiología
6.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510843

RESUMEN

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Morfogénesis/fisiología
9.
Plant Cell ; 34(1): 209-227, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623438

RESUMEN

As the outermost layer of plants, the epidermis serves as a critical interface between plants and the environment. During leaf development, the differentiation of specialized epidermal cell types, including stomatal guard cells, pavement cells, and trichomes, occurs simultaneously, each providing unique and pivotal functions for plant growth and survival. Decades of molecular-genetic and physiological studies have unraveled key players and hormone signaling specifying epidermal differentiation. However, most studies focus on only one cell type at a time, and how these distinct cell types coordinate as a unit is far from well-comprehended. Here we provide a review on the current knowledge of regulatory mechanisms underpinning the fate specification, differentiation, morphogenesis, and positioning of these specialized cell types. Emphasis is given to their shared developmental origins, fate flexibility, as well as cell cycle and hormonal controls. Furthermore, we discuss computational modeling approaches to integrate how mechanical properties of individual epidermal cell types and entire tissue/organ properties mutually influence each other. We hope to illuminate the underlying mechanisms coordinating the cell differentiation that ultimately generate a functional leaf epidermis.


Asunto(s)
Diferenciación Celular , Desarrollo de la Planta , Epidermis de la Planta/fisiología , Hojas de la Planta/fisiología
11.
New Phytol ; 232(2): 673-691, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33993523

RESUMEN

Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces. To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth. We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces. These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth.


Asunto(s)
Populus , Madera , Pared Celular , Xilema
13.
Methods Mol Biol ; 2200: 349-369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175387

RESUMEN

Atomic force microscopy (AFM) is an indentation technique used to reconstruct the topography of various materials and organisms. AFM can also measure the mechanical properties of the sample. In plants, AFM is applied to image cell wall structural details and measure the elastic properties in the outer cell walls. Here, I describe the use of high-resolution AFM to measure the elasticity of resin-embedded ultrathin sections of leaf epidermal cell walls. This approach allows to access the fine details within the wall matrix and eliminate the influence of the topography or the turgor on mechanical measurements. In this chapter, the sample preparation, AFM image acquisition, and processing of force curves are described. Altogether, these methods allow to measure the wall stiffness and compare different cell wall regions.


Asunto(s)
Arabidopsis/ultraestructura , Pared Celular/ultraestructura , Microscopía de Fuerza Atómica , Epidermis de la Planta/ultraestructura , Hojas de la Planta/ultraestructura
14.
Curr Biol ; 30(19): 3880-3888.e5, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32795439

RESUMEN

Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3-5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6-8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes-such as post-translational modification of one such regulator-affects organ morphology.


Asunto(s)
Capsella/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Adaptación Fisiológica/genética , Anisotropía , Proteínas de Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Capsella/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Expresión Génica/genética , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(27): 16027-16034, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571946

RESUMEN

Puzzle-shaped pavement cells provide a powerful model system to investigate the cellular and subcellular processes underlying complex cell-shape determination in plants. To better understand pavement cell-shape acquisition and the role of auxin in this process, we focused on the spirals of young stomatal lineage ground cells of Arabidopsis leaf epidermis. The predictability of lobe formation in these cells allowed us to demonstrate that the auxin response gradient forms within the cells of the spiral and fluctuates based on the particular stage of lobe development. We revealed that specific localization of auxin transporters at the different membranes of these young cells changes during the course of lobe formation, suggesting that these fluctuating auxin response gradients are orchestrated via auxin transport to control lobe formation and determine pavement cell shape.


Asunto(s)
Arabidopsis/metabolismo , Forma de la Célula/efectos de los fármacos , Forma de la Célula/fisiología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Arabidopsis , Transporte Biológico , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo
16.
Plant Physiol ; 182(4): 1946-1965, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32005783

RESUMEN

Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glucanos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Xilanos/metabolismo , Xilema/metabolismo
18.
Methods Mol Biol ; 1992: 215-230, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148041

RESUMEN

Cellular force microscopy (CFM) is a noninvasive microindentation method used to measure plant cell stiffness in vivo. CFM is a scanning probe microscopy technique similar in operation to atomic force microscopy (AFM); however, the scale of movement and range of forces are much larger, making it suitable for stiffness measurements on turgid plant cells in whole organs. CFM experiments can be performed on living samples over extended time periods, facilitating the exploration of the dynamics of processes involving mechanics. Different sensor technologies can be used, along with a variety of probe shapes and sizes that can be tailored to specific applications. Measurements can be made for specific indentation depths, forces and timing, allowing for very precise mechanical stimulation of cells with known forces. High forces with sharp tips can also be used for mechanical ablation of cells with force feedback.


Asunto(s)
Módulo de Elasticidad , Microscopía de Sonda de Barrido/métodos , Cebollas/citología , Epidermis de la Planta/citología , Fenómenos Biomecánicos , Pared Celular/química , Diseño de Equipo , Microscopía de Sonda de Barrido/instrumentación , Cebollas/química , Células Vegetales/química , Epidermis de la Planta/química , Programas Informáticos
19.
New Phytol ; 223(3): 1420-1432, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038751

RESUMEN

distribution of auxin within plant tissues is of great importance for developmental plasticity, including root gravitropic growth. Auxin flow is directed by the subcellular polar distribution and dynamic relocalisation of auxin transporters such as the PIN-FORMED (PIN) efflux carriers, which can be influenced by the main natural plant auxin indole-3-acetic acid (IAA). Anthranilic acid (AA) is an important early precursor of IAA and previously published studies with AA analogues have suggested that AA may also regulate PIN localisation. Using Arabidopsis thaliana as a model species, we studied an AA-deficient mutant displaying agravitropic root growth, treated seedlings with AA and AA analogues and transformed lines to over-produce AA while inhibiting its conversion to downstream IAA precursors. We showed that AA rescues root gravitropic growth in the AA-deficient mutant at concentrations that do not rescue IAA levels. Overproduction of AA affects root gravitropism without affecting IAA levels. Treatments with, or deficiency in, AA result in defects in PIN polarity and gravistimulus-induced PIN relocalisation in root cells. Our results revealed a previously unknown role for AA in the regulation of PIN subcellular localisation and dynamics involved in root gravitropism, which is independent of its better known role in IAA biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polaridad Celular , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , ortoaminobenzoatos/metabolismo , Arabidopsis/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Ácidos Indolacéticos/química , Mutación/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Quinolonas/farmacología , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
20.
Bio Protoc ; 9(7): e3205, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33655001

RESUMEN

Plant cell walls consist of different polysaccharides and structural proteins, which form a rigid layer located outside of the plasma membrane. The wall is also a very dynamic cell composite, which is characterized by complex polysaccharide interactions and various modifications during cell development. The visualization of cell wall components in situ is very challenging due to the small size of cell wall composites (nanometer scale), large diversity of the wall polysaccharides and their complex interactions. This protocol describes immunogold labeling of different cell wall epitopes for high-resolution transmission electron microscopy (TEM). It provides a detailed procedure for collection and preparation of plant material, ultra-thin sectioning, specimen labeling and contrasting. An immunolabeling procedure workflow was optimized to obtain high efficiency of carbohydrates labeling for high-resolution TEM. This method was applied to study plant cell wall characteristics in various plant tissues but could also be applied for other cell components in plant and animal tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA